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Hepatic failure is a feared complication that accounts for up to 75% of mortality after extensive
liver resection. Despite improved perioperative care, the increasing complexity and extensive-
ness of surgical interventions, in combination with an expanding number of resections in
patients with compromised liver function, still results in an incidence of postresectional liver
failure (PLF) of 1–9%. Preventive measures aim to enhance future remnant liver size and func-
tion. Numerous non-invasive techniques to assess liver function and predict remnant liver vol-
ume are being developed, along with introduction of novel surgical strategies that augment
growth of the future remnant liver. Detection of PLF is often too late and treatment is primarily
symptomatic. Current therapeutic research focuses on ([bio]artificial) liver function support
and regenerative medicine. In this review we discuss the current state and new developments
in prediction, prevention and management of PLF, in light of novel insights into the aetiology
of this complex syndrome.
Lay summary: Liver failure is the main cause of death after partial liver resection for cancer,
and is presumably caused by an insufficient quantity and function of the liver remnant. Detec-
tion of liver failure is often too late, and current treatment focuses on relieve of symptoms.
New research initiatives explore artificial support of liver function and stimulation of
regrowth of the remnant liver.
� 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights
reserved.
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Introduction
Key point

Postresectional liver failure
(PLF) is the main cause of
postoperative mortality
after liver resection for
hepatobiliary malignancy.
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Partial liver resection for hepatobiliary tumours is
relatively safe and often the only curative treatment
option. The unequalled capacity of the liver to
regenerate and restore its functionalities permits
the surgical removal of a substantial part of the liver
mass. However, postresectional liver failure (PLF)
occurs in up to 9% of patients and remains the main
cause of postoperative mortality [1,2]. PLF has a
subacute course, and an inadequate functional
reserve of the remnant liver is central in its aetiol-
ogy. Insufficient hepatic secretory capacity is
reflected by hyperbilirubinemia, whereas decreased
synthetic and detoxifying functions can manifest as
coagulopathy and hepatic encephalopathy [1].

Hyperbilirubinemia is included in all currently
used definitions of PLF. The ‘50–50 criteria’ predict
a 59% risk on early postoperative mortality if sys-
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temic bilirubin rises above 50 lmol/L and pro-
thrombin time decreases to 50% on postoperative
day 5 [3]. The ‘peak bilirubin criterion’ defines PLF
as a bilirubin level above 120 lmol/L within 90 days
after major hepatectomy, and has a positive
predictive value of 33% for liver-related death in
non-cirrhotic patients [4]. The definition of PLF
developed by the International Study Group of Liver
Surgery encompasses bilirubin elevation (according
to local criteria) on or after postoperative day 5,
and grades PLF based on international normalized
ratio (INR) derangement [5]. Postoperative mortality
in PLF grade A (INR <1.5), B (INR P1.5 and <2.0) and
C (INR P2.0) was 0%, 12%, and 54%, respectively [5].
In order to provide a comprehensive overview of
this syndrome, no specific definition was selected
for this review.
logy 2016 vol. 65 j 1217–1231
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Key point

Insufficient remnant liver
volume and function are
central in the aetiology of
PLF, and detailed assessment
of preoperative liver
function is pivotal in surgical
management of hepatobil-
iary tumours.
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Liver regeneration after partial liver resection

Liver regeneration following partial hepatectomy is
a tightly orchestrated process involving the spa-
tiotemporal interplay between parenchymal and
non-parenchymal cells and is driven by multiple
signals (see for detailed reviews references [6,7]).
First, immediately after partial liver resection, the
total hepatic inflow passes through the vascular
bed of the smaller remnant liver. Resultant shear
stress, a relative increase in supply of signalling
molecules from the (portal) circulation, and growth
factors released after remodelling of the extracellu-
lar matrix, provide the triggers for initiation of liver
regeneration. Interleukin 6 and tumour necrosis
factor alpha released by activated Kupffer cells are
important for cell cycle re-entry of normally
quiescent hepatocytes, with further cell cycle pro-
gression driven by mitogens such as hepatocyte
growth factor. Proliferation of the various non-
parenchymal cell types enables re-establishment
of the hepatic architecture. Through poorly
understood molecular events, liver regeneration
terminates when the original liver mass and func-
tional capacity have been restored.
Aetiology of postresectional liver failure

During liver regeneration, a minimum amount of
remnant liver is required to maintain vital liver
functions and support regrowth. In a seminal study
almost half of the patients with a remnant liver vol-
ume (RLV) smaller than 26.6% of the pre-resection
value, developed severe hepatic dysfunction com-
pared with 1.2% of patients with a larger RLV [2].
Consequently, a RLV of 25–30% is currently used
as lower limit in patients with normal liver func-
tion, whereas a minimum RLV of about 40% is
mandatory in patients with impaired liver function
[8]. Five main factors have been recognized in the
aetiology of PLF (Fig. 1).
Hepatic haemodynamic imbalance

PLF shares features of the small-for-size syndrome
that occurs in the setting of (partial) liver trans-
plantation. Portal hyperperfusion of the remnant
liver results in adaptive reduction of arterial blood
flow through activation of the hepatic arterial buf-
fer response (see reference [9] for a detailed
review). While increased perfusion and resultant
shear stress are instrumental in initiating the
regenerative cascade, portal hyperperfusion and
arterial hypoperfusion may have deleterious effects
on postoperative recovery of liver function [9].
Increased portal flow and pressure after major hep-
atectomy increased the risk for PLF in non-cirrhotic
patients [10]. In patients undergoing partial liver
transplantation, post-reperfusion portal hyperten-
Journal of Hepatology 2016 vol. 65 j 12
sion resulted in sinusoidal damage and reduced
levels of nitric oxide, a signal molecule engaged in
the initiation of liver regeneration [11].

Unmet hepatic metabolic demand: disturbed bile salt
homeostasis

Impaired activity of the canalicular pump(s)
involved in bilirubin secretion results in intrahepatic
accumulation and systemic release of conjugated
bilirubin [12]. While bilirubin is generally not
regarded as detrimental to the liver, a more general-
ized dysfunction of canalicular transporters may
result in hepatic accumulation of bile salts. Circulat-
ing levels of bile salts rise as early as oneminute after
partial hepatectomy in rats [13], and this is shortly
followed by transient accumulation of bile salts in
the liver [14]. An important stimulatory role for bile
salts and their membrane-bound and nuclear
receptors in liver regeneration is emerging [15].
Being biological detergents, excessive intracellular
accumulation of bile salts, however, causes damage
to internal membranes (particularly in mitochon-
dria) of the hepatocyte and results in apoptosis
[16]. In mice with deranged bile salt homeostasis,
otherwise well-tolerated 70% partial hepatectomy
results in massive hepatocyte necrosis and early
mortality [17]. Animal studies underscore that tight
control of (hepatic) bile salt homeostasis is a prereq-
uisite for unimpeded liver regeneration [17,18].

Impaired liver innate immune defence

Liver regeneration after partial hepatectomy
involves activation of the livers’ innate immune sys-
tem [19]. Innate immune receptors of the Toll-like
receptor family that recognize bacterial products,
and downstream (adaptor) proteins that relay the
signal intracellularly, are engaged in this activation
step [20]. Liver-resident macrophages not only play
an important role in the regenerative response after
liver resection by producing priming factors, they
also clear portal endotoxins and eliminate translo-
cated bacteria [21], thus limiting exposure of hepato-
cytes to (pro-apoptotic) lipopolysaccharide (LPS) and
preventing systemic infection [22]. Following resec-
tion, adequate numbers of Kupffer cells should
remain to preserve these essential functions. The risk
of infection increases with the extent of resection,
and a majority of patients with hepatic dysfunction
also develops infectious complications [2]. Cytokine
release by activated Kupffer cells is hampered after
major liver resection [22]. Likewise, impaired phago-
cytic activity of the reticuloendothelial system is
observed after major resection [23], and this likely
contributes to increased infectious risk [2].

Gut microbiome-gut-liver axis

An emerging concept is that the gut microbiota
modulates the regenerative ability of the liver
17–1231
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Fig. 1. Aetiology of postresectional liver failure. The altered blood-to-liver volume ratio causes elevated portal pressure and resultant shear stress and sinusoidal
endothelial injury. Although Kupffer cells are activated, activity in the liver remnant is inadequate to initiate and/or maintain the innate immune response that drives
postresectional liver regeneration. Combined with increased enteric bacterial translocation, the infectious risk is increased. Impaired canalicular secretion of bile salts
results in intrahepatic accumulation and subsequent hepatocellular injury. In case of venous reconstruction, impaired hepatic outflow can result in hepatic venous
congestion. Lastly, livers with compromised function due to chronic liver diseases are more vulnerable to perioperative ischemic reperfusion injury, as reflected in impaired
recovery of postoperative liver function.

Key point

Four types of parenchymal
dysfunction (chemotherapy-
associated liver injury, fatty
degeneration, fibrosis and
cholestasis) are increasingly
observed.
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(reviewed in reference [24]). This is likely to
involve interactions between the gut microbiome
and host metabolism, effects of the gut microbiota
on bile salt physiology, as well as effects of bacte-
rial endotoxins [24,25]. Bile salts exert direct anti-
microbial activity and shape the composition of
the gut flora. Conversely, certain microbial strains
can convert the host’s primary bile salts into
secondary species, thus affecting the signalling
properties of bile salts. This again can impact host
metabolism, bile salt homeostasis, and liver
regeneration [26–28]. As discussed above, activa-
tion of the innate immune response in the liver is
important for liver regeneration after partial
hepatectomy, and microbial products including
LPS are implicated in Kupffer cell activation [29].
Failure of gut-derived endotoxins to reach the
liver resulted in impaired DNA synthesis in repli-
cating hepatocytes, likely through reduced
production of priming factors [30]. On the other
hand, excessive levels of endotoxin can impair liver
regeneration and cause mortality after extended
hepatectomy.

Impaired background liver function

Impaired liver quality plays a pivotal role in PLF
and is frequently present in patients that undergo
partial hepatectomy for the three most common
indications: colorectal cancer liver metastasis
Journal o
(CRLM), hepatocellular carcinoma (HCC) and
cholangiocarcinoma (CCA). Four types of liver
pathology are related to these hepatobiliary
tumours, viz. chemotherapy-associated liver injury,
fatty degeneration, fibrotic progression, and
cholestasis.
Chemotherapy-associated liver injury (CALI)

Neoadjuvant chemotherapy is widely used for
downstaging of CRLM. Oxaliplatin is central in most
currently used regimens and is considered the main
causative agent for development of sinusoidal
obstruction syndrome (SOS) and nodular regenera-
tive hyperplasia (NRH), whereas irinotecan has been
associated with the development of chemotherapy-
associated steatohepatitis.
Sinusoidal obstruction syndrome

SOS is seen in up to 80% of patients undergoing
oxaliplatin-based chemotherapy [31], and is charac-
terized by injury of endothelial cells, parenchymal
damage, and (fibrotic) venular lesions. Sinusoidal
dilatation (SD) is the most common manifestation
of SOS in the grading system of Rubbia-Brandt
et al. [31].
f Hepatology 2016 vol. 65 j 1217–1231 1219
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Although exact mechanisms are unclear, a
diminished preoperative functional reserve and
longer hospital stay after major hepatectomy was
reported in patients with SD [32]. The effect of SD
on development of PLF is uncertain. Studies indi-
cate no effect, or an incidence of PLF in up to 21%
of patients with moderate to severe SD after major
hepatectomy (0–4.2% in patients with absent or
mild SD) [33,34]. Rodent models using
monocrotalin or oxaliplatin to induce SOS revealed
impairment of liver regeneration and induction of
liver injury following partial hepatectomy [35].
This was accompanied by less pronounced induc-
tion of hepatic mitogens, reduced liver volume
recovery, enhanced hepatocellular necrosis and
higher serum alanine aminotransferase (ALT) and
bilirubin levels [35,36].

Bevacizumab, a monoclonal antibody directed
against vascular endothelial growth factor A,
decreased the incidence of SD in patients that
received oxaliplatin-based chemotherapy [37].
Downregulation of matrix metallopeptidase-9, a
fibrotic remodelling factor involved in perisinu-
soidal extracellular matrix breakdown, may be
accountable [38].

SD is a histological diagnosis and can be
detected by biopsy, however the false-negative
classification is high due to the spatial heterogene-
ity of its manifestation [34]. Surrogate measures
are biochemical assessment, functional tests, imag-
ing and spleen size measurement. Increased aspar-
tate aminotransferase (AST) and alkaline
phosphatase (ALP) levels can point to SD, but are
non-specific. An indocyanine green retention rate
after 15 min (ICG-R15) >10% and the preoperative
AST-to-platelet-ratio index (APRI) are both inde-
pendently associated with the presence of SD
[32,33]. Patients with SD often have an increased
spleen volume [39], with an increase of P30%
reported to be predictive of SD [40]. Another typical
SD-related abnormality seen in imaging is reticular
hypointensity that presumably reflects locally
impaired Kupffer cell function [41]. Superparamag-
netic iron oxide-enhanced MRI can detect moder-
ate to severe SD [41], but gadoxetic acid-
enhanced MRI seems superior with a specificity of
96–100% on hepatobiliary phase images [42].
Nodular regenerative hyperplasia

A second histological characteristic of SOS is NRH,
which is observed in over 24% of patients after
oxaliplatin-based chemotherapy [38]. NRH is
characterized by diffuse transformation of liver
parenchyma into regenerative nodules that com-
press the surrounding parenchyma, and is graded
according to Wanless et al. [43]. NRH probably
arises due to changes in intrahepatic sinusoidal or
portal blood flow [43].

The incidence of PLF is increased in patients
with NRH, even rising to 25% after major
Journal of Hepatology 2016 vol. 65 j 12
hepatectomy in patients with moderate to severe
NRH [44]. Furthermore, coexistence of NRH with
moderate to severe SD has been noted [44]. Since
SD, in contrast to NRH, was no indisputable risk
indicator for postoperative outcome, it was sug-
gested that NRH is the true determinant of poor
short-term outcome after liver resection. Although
the mechanism is not elucidated, hepatic injury,
portal hypertension and a lower platelet count
may predispose to PLF [45].

A decreased platelet count combined with ele-
vated ALP, gamma-glutamyltransferase (GGT), and
total bilirubin levels can be found in NRH [46]. APRI
can predict NRH [44]. Percutaneous or transjugular
liver biopsy with hepatic venous pressure gradient
measurement may be used as a diagnostic tool,
but should solely be applied in selected high-risk
patients [44]. Reversibility of histological features
is uncertain and bevacizumab seems to protect
against development of NRH [38].

Chemotherapy-associated steatohepatitis

Irinotecan is associated with chemotherapy-induced
steatohepatitis with widely ranging incidence
reported in literature [47], and steatohepatitis after
irinotecan proved to increase the risk of death from
PLF [48]. Histopathological findings, prediction and
prevention will be discussed below in conjunction
with steatosis/steatohepatitis.
Non-alcoholic fatty liver disease and non-
alcoholic steatohepatitis

The prevalence of non-alcoholic fatty liver disease
(NAFLD) in the adult Western population is approx-
imately 20–30% and around 3–5% of adults are esti-
mated to have non-alcoholic steatohepatitis (NASH)
[49]. Despite lack of absolute consensus [50,51],
steatosis and NAFLD seem to be risk factors for PLF
and higher overall postoperative morbidity and
mortality [2,52,53].

Rodent models show that vulnerability of the
steatotic liver may be due to reduced tolerance
against ischemic injury caused by decreased perfu-
sion of the liver [54]. In addition, mitochondrial dys-
function in NAFLD results in impaired ATP synthesis,
while Kupffer cell dysfunction increases reactive
oxygen production which causes hepatocellular
injury [54,55]. In the steatotic liver the ability of
hepatocytes to regenerate after major tissue loss is
impaired [56]. Multiple pathways contribute to
unresponsiveness of fatty hepatocytes to regenera-
tive stimuli, and subsequent cell cycle arrest [57].
Furthermore, cell cycle transition may be negatively
affected by disturbed energy homeostasis in the
fatty liver [55].

Biopsy remains the most reliable method for
assessment of NAFLD but is increasingly replaced
by non-invasive alternatives due to a small risk for
17–1231
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complications and sampling errors [58,59]. Non-
invasive methods consist of functional liver tests,
breath tests, imaging, and biomarkers that assess
steatosis and fibrosis. The majority of patients with
NAFLD have normal liver function tests, however
some have elevated ALT, AST, GGT, and/or serum
ferritin. Ultrasonography is still the imaging modal-
ity of choice in patients with >33% parenchymal
steatosis, but its accuracy decreases in obese
patients [60]. Magnetic resonance (MR) imaging
(MRI) and MR spectroscopy directly quantify fat
and outperform computed tomography (CT) and
ultrasonography for prediction of steatosis when
the fat content is >5.5% [61].

Transient elastography (TE) and MR elastogra-
phy (MRE) indicate fibrosis by measuring liver stiff-
ness. TE predominantly detects cirrhosis [62], and
MRE can distinguish advanced from mild fibrosis
[63]. Especially TE is easily applied in clinic but
its use is limited by obesity, although utilization
of an XL-probe improves accuracy in obese patients
[64].

Simultaneous measurement of steatosis and
fibrosis can be accomplished by integration of the
controlled attenuation parameter in TE or acoustic
radiation force impulse in a conventional ultra-
sonography machine [65,66]. Serum fibroblast
growth factor 21 (Fgf21) and cytokeratin 18 are
biomarkers that can discriminate between NASH
and NAFLD [67,68], and NAFLD, NASH and fibrosis
[67,68]. The fibrosis-4 score showed a negative pre-
dictive value of 98% for detecting patients without
advanced fibrosis [69]. Other combined parameters
that assess hepatic fibrosis are the APRI, FibroMeter
NAFLD, NAFLD fibrosis score, and BARD score
[70–73].
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Fibrosis and cirrhosis

Hepatic fibrosis is mainly present in patients
undergoing partial liver resection for HCC, and is
mostly caused by progression of steatosis or related
to chronic viral hepatitis [74]. In the past, the
decreased regenerative capacity of the fibrotic liver
increased the risk of PLF and caused postoperative
mortality rates of around 15% [75]. Present mortal-
ity rates have declined to 0–5% due to advances in
preoperative liver function assessment and strict
patient selection [74] (Fig. 2).

Little is known about the influence of fibrosis on
PLF. Regeneration of the fibrotic liver is suggested
to be a progenitor cell-mediated process, in con-
trast to replication of existing mature hepatocytes
in the non-compromised liver [76]. Animal studies
indicate that impaired regeneration and subse-
quent hepatic dysfunction following partial liver
resection are due to inefficient induction of cell
cycle transition mediators, hepatocyte necrosis,
and a pronounced fibrogenic response [76,77].
Enhanced bacterial translocation and decreased
Journal o
innate and adaptive immune system activity add
to vulnerability of the fibrotic liver as shown in ani-
mal and human studies [78].

For diagnostic purposes, percutaneous biopsy is
increasingly replaced by four-pass transjugular
biopsy [79], which provides the advantage of con-
current measurement of the hepatic venous pres-
sure gradient (HVPG). Class I biomarkers (e.g., AST)
reflect activity of fibrogenesis, whereas class II
biomarkers (e.g. APRI) correlate with fibrosis [80].
TE is the most applied technique, but shows low
accuracy in patients with obesity or ascites [81].
Both TE and acoustic radiation force impulse have
high accuracy for assessment of cirrhosis [81]. Addi-
tionally, multiple combination serum tests, such as
the FibroTest, Hepascore, and FibroMeter, are used
with or without TE [82]. Gadolinium-enhanced
MRI is promising as it showed significant signal
intensity differences between patients with and
without fibrosis [83].

Two preoperative parameters that directly pre-
dict development of PLF in patients with cirrhosis
are an RLV-to-body weight ratio <1.4% [84] and
the change in portal venous pressure [85]. Further-
more, whereas portal hypertension ought to be a
contraindication for hepatic resection in patients
with HCC, a recent study on the relationship
between the HVPG and the development of PLF
found that even in patients with a pressure gradient
P10 mmHg, one-quarter of the patients experi-
enced an uneventful postoperative course [86].
Cholestasis

Obstructive cholestasis is characterized by retention
of biliary constituents and a ductular reaction, and
upon longer duration by hepatocyte degeneration,
bile salt stasis, and progression of the ductular reac-
tion to biliary fibrosis [87]. Patients with perihilar
CCA often present with jaundice, weight loss, and
cholangitis, whereas intrahepatic CCA is frequently
associated with a silent clinical course and general
symptoms such as malaise and loss of appetite
resulting in late detection [88].

After extensive resection for perihilar CCA, PLF is
seen in up to 30% of patients and mortality occurs in
around 8–12% of patients [89,90], possibly due to a
combination of cholangitis and a small RLV [91]. A
complication rate of up to 38% is reported after
surgical removal of intrahepatic CCA, with few
patients developing PLF and a mortality rate of
approximately 1% [92].

Animal studies suggest that biliary dilatation
caused by distal obstruction compresses the portal
triad resulting in a decreased portal flow with
subsequent compensatory increased arterial flow
in combination with portosystemic shunting
(reviewed in reference [93]). Additionally, the inter-
rupted enterohepatic circulation, lower expression
of proliferative mediators in the priming and early
f Hepatology 2016 vol. 65 j 1217–1231 1221
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superparamagnetic iron oxide-enhanced; SV, splenic volume; TE, transient elastography; US, ultrasonography. ^Barcelona clinic criteria ⁄Resection criteria are expanded
and presumably differ between centres; yin case of bleeding; �only tested pre-clinically or in acute liver failure/acute-on-chronic liver failure.
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phase of regeneration, and toxic bile-associated
hepatocyte apoptosis, add to defective regeneration
after partial resection of the obstructed liver in
rodents [93]. A significant suppression of mitotic
indices and lower hepatic weight gain after partial
hepatectomy is observed in cholestatic rats [94].
Furthermore, animal studies provided evidence
for enhanced susceptibility to post-ischemic reper-
fusion injury in cholestatic rats [95]. The detrimen-
tal role of Kupffer cells in cholestatic injury is
Journal of Hepatology 2016 vol. 65 j 12
demonstrated by amelioration of injury in bile
duct-ligated mice with prior depletion of Kupffer
cells [96]. Moreover, an excessive inflammatory
response through pro-inflammatory cytokine pro-
duction led to deterioration of hepatic function after
bile duct ligation, resulting in enhanced susceptibil-
ity to infection [97]. Jaundiced patients undergoing
laparotomy additionally showed significantly more
bacterial translocation [98]. This is in line with the
high clinical incidence of postoperative infectious
17–1231
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complications in cholestatic patients undergoing
partial hepatectomy [90].

Obstructive cholestasis is biochemically charac-
terized by elevated serum bilirubin, ALP and GGT
levels [99]. Inflammatory parameters are elevated
in case of acute cholangitis [100]. Imaging of chole-
static parenchyma using ultrasonography, CT or MR
cholangiopancreatography is not focused on assess-
ing quality but on detection of dilated intrahepatic
bile ducts.
Assessment of liver volume and function

Both assessment of liver volume and function is
mandatory to predict postoperative functional
reserve. Methods for measurement of future RLV
range from 2D volumetry on computed tomogra-
phy, to perioperative 3D modelling. Computational
software allows manual or automatic delineation of
the liver on all CT or MRI sections, thereby allowing
calculation of liver volume [101,102].

Liver function can be estimated by preoperative
biochemistry, breath tests and imaging. Hepatic
secretory (bilirubin), synthetic (INR) and
detoxifying (ammonia) functions and liver damage
(ALT, AST) are evaluated by clinical chemistry.
Metabolic liver function testing can be performed
with the LiMAx test and the indocyanine green
clearance rate (ICGR-15) [11,12]. The LiMAx test
measures metabolism of intravenously injected
13C-labeled methacetin in exhaled breath.
Imaging techniques used in the clinic include
99mTc-labeled galactosyl serum albumin (GSA) liver
scintigraphy, 99mTc-mebrofenin hepatobiliary
scintigraphy with single-photon emission
computed tomography (SPECT), and gadolinium-
enhanced MRI using gadolinium ethoxybenzyl
diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)
[103–105]. Impaired enhancement of labeled
contrast indicates decreased hepatic uptake and
reflects compromised liver quality. Liver enhance-
ment in gadolinium-enhanced MRI shows good
correlation with regional liver function, and offers
the advantage of simultaneous diagnostic evalua-
tion and functional assessment [104].
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Prevention of postresectional liver failure

Prevention of PLF consists of four principles: opti-
mizing preoperative liver function, enlarging RLV,
limiting hepatic haemodynamic disbalance and
providing optimal perioperative care.

(Pre-)clinical methods of preoperative liver
optimization

The liver of patients with SOS is in a prothrombotic
state as reflected by upregulation of plasminogen
activator inhibitor-1, Von Willebrand factor and
Journal o
factor X [106]. The fibrinolytic agent defibrotide is
administered in bone marrow transplant recipients
for treatment of SOS [107], and might be beneficial
in chemotherapy-related SOS as well. Anti-platelet
therapy such as aspirin seems to protect against
oxaliplatin-induced SOS in patients [108]. Oxali-
platin is conjugated to glutathione and subsequently
excreted from the cell, which is the probable cause
of reduced hepatic glutathione levels seen in SOS
[106]. Supplementation of antioxidant therapy
(hydroxyanisole) or flavonoids reduced the severity
of sinusoidal injury in rodents [106,109]. This effect
has not yet been confirmed in humans.
Chemotherapy-free interval prior to liver resection
may reverse SOS, as suggested by a longer period
since the last cycle of chemotherapy in patients
without histological evidence of SD at the time of
liver resection [32]. On the other hand, hepatic sinu-
soidal lesions and even progression of fibrosis are
reported up to several months after cessation of
chemotherapy [31]. Portal hypertension can be
diminished by perioperative splenic artery ligation
in patients with severe NRH and portal hyperten-
sion, and might decrease postoperative morbidity
[110].

Liver steatosis can be reduced by a preoperative
very-low calorie diet, as has been shown in potential
liver transplant donors [111]. Less steatosis and
steatohepatitis was observed in patients with one
week of calorie restriction prior to resection for
benign or malignant liver disease, compared to ad
lib fed patients [112]. However, despite less intraop-
erative blood loss in the diet group, no effect was
seen on postoperative complications in this patient
group.

Optimization of liver function in patients with
cirrhosis has not yet been attempted, however, pla-
telet infusion may be an option. Thrombocytopenia
in cirrhosis may be caused by a decrease in (hepatic)
thrombopoetin production and systemic removal of
platelets in the spleen [113]. Platelets have a stimu-
latory effect on liver regeneration [114], and platelet
infusion might provide an option for preoperative
optimization.

The preventive role of preoperative biliary
drainage in obstructive cholestasis is uncertain.
Internal (stenting via endoscopic retrograde
cholangiopancreatography, ERCP) or external
(percutaneous transhepatic biliary drainage, PTBD)
drainage in pancreatic head cancer patients has
been shown to have no benefits on surgical outcome
and induced drainage-related complications [115],
whereas its role in proximal malignant bile duct
obstruction is inconclusive. Preoperative improved
secretory liver function, improved postoperative
liver regeneration, and a reduction of mortality after
right hemihepatectomy were reported [116], but
this could not be reproduced by others [117,118].
Drainage-related complications such as cholangitis
and haemorrhage are seen in up to 33% of patients
[116]. Especially infectious complications are more
f Hepatology 2016 vol. 65 j 1217–1231 1223
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Fig. 3. Visualization of pre- or perioperative interventions and their effect on liver remnant
volume. (A) Malignant liver disease (B) Embolization/ligation of the right portal branch (1) results in
atrophy of the right hemi-liver and compensatory growth of the left hemi-liver, which can be removed
when appropriate hypertrophy has been achieved (2). (C) Removal of tumours from the left hemi-liver
and occlusion of the right portal branch (1). After 4–6 weeks, the volume of the left hemi-liver is
increased and the right hemi-liver can be removed (2). (D) Removal of tumours from the left hemi-liver,
in situ splitting of the hemi-livers, and simultaneous ligation of the right portal vein branch (1). After one
week, augmented hypertrophy of the left hemi-liver permits removal of the right hemi-liver (2).

Key point

Treatments to enhance liver
regeneration may enlarge
the number of patients
eligible for curative intent
surgery.
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frequent after ERCP stenting [119], whereas PTBD
causes interruption of the enterohepatic cycle and
impairment of liver regeneration [15]. Bile salt
reinfusion during PTBD had beneficial effects on
postoperative liver function [120].

Enlarging of future remnant liver volume

Hypertrophy-inducing procedures and surgical
adaptations should be performed if the RLV is
expected to be <25% in patients without liver dis-
ease and <35–40% in patients with impaired liver
function [8]. In general, portal vein embolization
(PVE, Fig. 3) enlarges the RLV with approximately
35–40% and improves eligibility for hepatectomy
by 20% [1]. In less than 5% of patients the hyper-
trophic response following PVE is inadequate
[121]. Major PVE-related complications occur in
approximately 2.5% of patients and include intra-
abdominal abscess, liver hematoma, and backflow
of embolization material [121]. A recent meta-
analysis comparing PVE with ligation of the portal
vein (PVL) showed comparable preoperative hyper-
trophic responses and postoperative morbidity
[122]. New developments exist of polyvinyl alcohol
particles with plugs or coils as embolizing materi-
als, and have resulted in lower recanalization rates,
enhanced hypertrophy, and a decreased occurrence
of PLF [123].
Journal of Hepatology 2016 vol. 65 j 12
Disease progression after PVE occurs in up to 66%
of patients, and is likely due to increased arterial
flow to the embolized lobe and/or waiting period
to surgery [124]. The interval between PVE and sur-
gery should therefore be as short as possible but not
less than 2–3 weeks [124]. Post-PVE chemotherapy
before resection may halt disease progression with-
out affecting subsequent liver regeneration [125].

PVE is commonly performed after the adminis-
tration of chemotherapy [108]. Evidence for the
influence of CALI on post-PVE hypertrophy is con-
flicting. Whereas SD seems to have a clear inhibitory
effect on hypertrophy [126], chemotherapy has no
effect on liver regrowth [121,127]. Moreover,
patients with NASH show a trend towards less
post-PVE liver volume gain compared to patients
with normal liver function [126]. Although robust
evidence is lacking [121], cholestasis appears to
have no negative impact on hypertrophy after PVE.
After right hepatectomy in patients with chronic
liver disease, PLF developed in 50% of patients with-
out PVE vs. 7.1% in patients with PVE [128]. Impaired
hypertrophy after technically successful PVE in
patients with chronic liver disease is a contraindica-
tion for major resection [128].

The two-staged hepatectomy is an excellent
method to increase RLV and consequently achieve
curation in patients with bilobar tumours, who are
not deemed resectable in one attempt. PVL concur-
rent with two-stage hepatectomy resulted in an
RLV gain of about 50–60% after four weeks. This
strategy is advised in case of an RLV after the first
stage of <25–30% and <40% in patients without
and with chronic liver disease, respectively. Liver
cirrhosis is a contraindication for the two-staged
procedure.

The recently developed associating liver partition
and portal vein ligation for staged hepatectomy
(ALPPS) procedure is based on the same principle
as two-stage hepatectomy, albeit that during the
first stage in ALPPS the liver is split in situ combined
with portal vein ligation, and the second stage con-
sists of removal of the ligated lobe 7–14 days later
[129]. An astonishing average hypertrophy rate of
80% can be achieved with this procedure, creating
a curative opportunity for initially non-resectable
patients who have insufficient hypertrophy on PVE
[130]. However, the high morbidity and mortality
rates up to 28% and 9% respectively restrict the use
of ALPPS to fit patients under the age of 60 years
[130]. The second stage of ALPPS should probably
be (temporarily) abolished in patients who develop
major complications after the first stage [131].

Although ALPPS is currently performed in all
liver backgrounds, histological changes comprising
fibrosis, steatosis, and chemotherapy-related alter-
ations resulted in lower hypertrophy rates [130].
The ALPPS procedure resulted in a quadrupled
mortality rate, doubled median hospital stay, and
doubled risk for PLF in patients with intermediate-
stage HCC [132] and should therefore only be
17–1231
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applied in HCC patients with low-grade fibrosis.
ALPPS should not, or with great caution, be applied
in patients with perihilar and intrahepatic CCA due
to the (already) high postoperative mortality rate in
this patient category [130,133]. Modifications such
as monosegment ALPPS, in which only one instead
of two or more Couinaud segments remain, showed
promising results in a small cohort of 12 patients,
with a PLF rate of 33% but without mortality [134].

Limiting hepatic haemodynamic imbalance

Splenectomy and splenic artery ligation can be
effective strategies that limit the postresectional
increase in portal blood flow and pressure, by acti-
vating the hepatic arterial buffer response. These
procedures resulted in increased arterial inflow,
and enhanced liver regeneration and liver function
after (extended) partial hepatectomy in rodent
models [135]. Furthermore, in animal models of
partial hepatectomy and small-for-size liver grafts,
the administration of terlipressin and somatostatin
seemed to reduce postresectional portal hyperper-
fusion and increase regenerative parameters
[136–138].

Providing optimal perioperative care

Excessive perioperative blood loss, blood transfu-
sion, ischemia-reperfusion injury, and hepatic
manipulation predispose to PLF. Blood transfusion
enhances postoperative morbidity and tumour
recurrence presumably via a transfusion-related
inflammatory response [139]. A recent meta-
analysis confirmed that hepatic preconditioning
(i.e., intermittent vascular inflow occlusion) results
in less intraoperative blood loss and a shorter oper-
ating time in comparison to hepatectomy alone, but
without improved postoperative outcome [140].
Prolonged clamping should nonetheless be avoided
since ischemia-reperfusion injury has been shown
to induce severe hepatic damage [141]. Hepatic
manipulation per se elicits an inflammatory
response [142]. Methods to minimize mobilisation
of the liver include laparoscopic surgery and the
hanging method [143]. Laparoscopic resection of
HCCs reduced the incidence of PLF compared to
open surgery [144].

Since infectious complications such as bile leak-
age or abdominal collections may contribute to the
development of PLF and negatively affect the
postresectional course, several preventive mea-
sures have been explored. Postresectional primary
placement of abdominal drains proved not to be
beneficial after major liver resection and is even
associated with increased rates of complications
such as bile leakage and PLF [145,146]. Multiple
human studies focused on either pre- or postresec-
tional antibiotic prophylaxis, without evidence for
a significant effect on the rate of infectious compli-
cations [147,148]. Preoperative selective bowel
Journal o
contamination has been explored in rodent models,
showing amelioration of parenchymal injury and
increased liver regeneration after partial liver resec-
tion [149]. A meta-analysis of human transplant
studies however showed no benefits on infectious
complications [150].

Regenerative interventions

Augmentation of the regenerative response after
liver resection may be an option for prevention and
treatment of PLF. The nuclear bile salt receptor FXR
(farnesoid X receptor, Fig. 4) may be an attractive
therapeutic candidate, through effects on hepatic
haemodynamics, bile salt and lipid homeostasis,
hepatic inflammation, and hepatocellular prolifera-
tion [18,151–153]. Being the key regulator of hepatic
bile salt homeostasis, genetic disruption of Fxr in
mice resulted in mortality and delayed liver
regeneration after partial hepatectomy. Conversely,
activation of Fxr by its endogenous ligands (i.e., bile
salts) or synthetic agonists enhanced liver regenera-
tion in hepatectomized mice. Furthermore, the
FXR-regulated enterokine FGF19 reduced mortality
f Hepatology 2016 vol. 65 j 1217–1231 1225
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in an acute liver failure mouse model [17]. FXR
agonists undergo current clinical evaluation, and
already showed efficacy in halting fibrotic progres-
sion in NASH patients [154].

Bearing in mind that tight control of bile salt
homeostasis and hepatic inflammatory tone is war-
ranted to allow normal progression of liver regen-
eration, targeting of the membrane bile salt
receptor TGR5 may be considered in PLF. In the
liver, TGR5 is expressed in liver endothelial cells,
cholangiocytes, and Kupffer cells [155,156]. Tgr5
enhances bile salt elimination in urine, reduces bile
salt hydrophobicity and prevents excessive cyto-
kine production by Kupffer cells, in case of bile salt
overload [14]. Other nuclear receptors that play a
direct role in liver regeneration, and have the
potential to reduce intrahepatic bile salt toxicity
by promoting phase I/II metabolism, are the preg-
nane X receptor and constitutive androstane recep-
tor [157,158]. A recent study showed that the
pregnane X receptor agonist rifampicin improved
hyperbilirubinemia and clinical status in patients
with persistent hepatocellular failure, including
one patient with PLF [159]. Despite in-depth
knowledge of the processes controlled by the above
(nuclear) receptors, their roles in liver regeneration
and implication in PLF have only been studied in
animal models.

A recently discovered negative regulator of liver
regeneration after partial hepatectomy, viz.
thrombospondin-1 [160], might be a target to
accelerate regeneration by antagonizing its action
through administration of leucine-serine-lysine-
leucine (LSKL) peptide [161]. Likewise, usefulness
of colony stimulating factor to accelerate postresec-
tional restoration of phagocytic capacity in the
human setting is worth exploring [162]. Given the
multifactorial origin of PLF strategies that simulta-
neously target multiple aetiological pillars may
prove most effective.

Transplantation of hepatocytes and other cell
types have been moderately successful in several
liver diseases in terms of spontaneous recovery or
bridging to orthotopic liver transplantation (see
reference [163] for a review), and might be of
interest for preoperative optimization of liver
parenchyma or management of PLF. Moreover,
intrahepatic or extrahepatic (scaffold-bound)
introduction of induced pluripotent stem cells
(iPSC), iPSC-derived or Lgr5+ stem cell-derived
organoids, cultured hepatocytes are extensively
studied in a pre-clinical setting, and might offer
advanced possibilities for pre- or postoperative
liver repopulation [164–168].
Management of postoperative liver failure

Due to the lack of randomized controlled trials with
PLF as primary outcome measure, almost no treat-
ments for acute and acute-on-chronic liver failure
Journal of Hepatology 2016 vol. 65 j 12
have been validated for PLF. When PLF is detected
after resection in (non-)compromised liver, goal-
directed therapy and functional support can be
offered (Fig. 2).
Goal-directed therapy

PLF is frequently accompanied by multi-organ dys-
function, requiring a systemic treatment approach
[169]. Goal-directed therapy focuses on support of
circulatory, ventilatory, and renal function in combi-
nation with treatment of hepatic encephalopathy,
coagulopathy and malnutrition as reviewed else-
where [1].
Functional support

Molecular absorbent recirculation system, an
extracorporeal artificial liver support device that
reduces liver failure-induced toxicity by facilitating
exchange of albumin-bound and water-soluble tox-
ins from plasma, is applicable as treatment for PLF
[170]. In addition, extracorporeal bio-artificial liver
devices fulfil functions of the liver (including
synthetic and immunological) by separation and pas-
sage of blood plasma through a reactor containing
layers of animal or human hepatocytes [171]. The
recently developed University College London-Liver
Dialysis Device extracts albumin by hemofiltration
and removes certain endotoxins by haemoperfusion,
in combination with human albumin infusion [172].
Unfortunately, although the latter two devices show
survival benefits, they have thus far been tested only
in a pre-clinical setting. Furthermore, promising
treatment modalities that focus on extracorporeal
high-flux haemodialysis in combination with albu-
min dialysis (Prometheus�), and patient plasma
replacement with fresh frozen plasma (high-volume
plasmapheresis), have been tested almost exclu-
sively as treatment for acute and acute-on-chronic
liver failure with sparse (underpowered) data on its
use in the context of liver failure after hepatic
resection [173,174].
Rescue and elective liver transplantation

The limited data on rescue liver transplantation in
patients with PLF showed a 5-year overall survival
of 40% [175], however appropriate criteria for
patient selection are lacking. Hence, rescue liver
transplantation is barely applied nowadays. More-
over, rescue liver transplantation should not be per-
formed if the patient was not eligible for
transplantation before partial hepatectomy.
Conclusion

The incidence of liver failure after surgical resection
is relatively low. This is accomplished to a large
17–1231
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extent by (I) better insight into the aetiology of PLF
and liver regeneration, (II) new imaging techniques
and biochemical tests for preoperative assessment
of liver quality, (III) highly effective preventive
measures, and (IV) improved perioperative care.
Due to the low event rate, prospective studies with
PLF as primary endpoint are nearly unachievable
[176], and most evidence is based on retrospective
cohort studies. Furthermore, a uniform definition
and outcome set are lacking, but imperative to
compare different cohorts [177]. In view of the cur-
rent increase of extensive resections in a compro-
mised liver background, the development of
universal prediction models, more advanced surgi-
cal techniques, and efficient preventive measures
become particularly important to obtain curability
in these challenging patients. Global collaborations
and registrations such as seen in the EASL-CLIF con-
sortium (acute-on-chronic liver failure) [130] or the
ALPPS-registry [178] seem the only manner to
obtain the required number of events for robust
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